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Why Multilingual LLMs Struggle



The curse of multilinguality

Training dataset imbalance:
non-English data make up < 10% 

Vocabulary composition: too 
few language-specific tokens 

Cultural 
misalignment

Broken 
language

Bad 
representation,

noisy 
embeddings

High 
token/word 

ratio



Our approach includes

1. Partial vocabulary replacement
2. Reinitalization of new token 

embeddings
3. Continual pretraining, ensuring the 

adoption of the new tokens
4. Eventual benchmarking



Tokenization 101
• We need tokenization to turn natural text into vector embeddings. 
• Each LLM has a fixed vocabulary of sub-words, each sub-word has 

a trainable embedding vector, thus natural text is vectorized. 
• Larger vocab allows shorter token sequences and more nuanced 

text representation. 

Training corpus SentencePiece

Text Fixed Vocabulary
Trainable 

embeddings
Sequence of 
embeddings

Tokenizer training 

Text vectorization



Mistral tokenization example
Input:         The quick brown fox
Tokenizer →    [The] [Ġquick] [Ġbrown] [Ġfox]
                        ↑
                 well-formed English - low token/word fertility

Input:         Швидкий рудий лис
Tokenizer →    [Шв] [ид] [кий] [Ġ] [ру] [д] [ий] [Ġ] [лис]
                               ↑  

fragmented Cyrillic - high fertility

Input:         الثعلب البني السریع
Tokenizer →    [ال] [ث] [ع] [ل] [ب] [Ġ] [ا] [ل] [ب] [ن] [ي] [Ġ] [ا] [ل] [س] [ر] [ي] [ع]
                             ↑     

ultra-fragmented Arabic - very high fertility



Vocabulary update update workflow

This workflow allows to expand the target language vocab via cannibalizing 
non-Latin tokens. 

1. Non-latin and non-UA tokens are removed along with their merge rules.
2. Token IDs of the removed tokens are assigned to additional UA tokens (existing 

UA tokens preserve their IDs)
3. Merge rules are updated to accommodate new UA tokens
4. Time to update embeddings

UA training 
corpus

UA tokenizer

Mistral tokenizer

Merging 
tokenizers

Removal of non-UA 
and non-Latin tokens

Merging of UA 
tokens

UA-rich updated 
Mistral tokenizer



Tokenization performance

*tokens/words ~ -log(vocab size)



Embeddings reinint
While the embeddings are trainable, we’ve given new tokens a 
warm start using the following heuristics:

where the new (longer) tokens are expressed through existing 
tokens and their respective embedding vectors are initialized as 
their normalized linear sum.



Continual pre-training

We have used 8xA100-80-GB for the continual 
pre-training of our models. 

The following graphs illustrate the adoption of 
the new tokens during the continual pre-training 
over the first ~350M tokens (172M for 
Georgian).









Evaluation metrics
NEWR (Non-Existing Word Ratio): The percentage of generated words 
not present in a reference vocabulary — high NEWR indicates 
hallucinations or poor lexical quality.

CSWR (Code-Switching Word Ratio): Measures how often the model 
generates words mixing characters from different alphabets (e.g., Latin + 
Cyrillic) — a sign of garbled outputs.

GCS (Grammar Correctness Score): A normalized score (via GPT-4 or 
equivalent) assessing grammatical quality of generations — higher is 
better.



Evaluation results



Conclusions
• Vocabulary is destiny: Token size & composition are the hidden levers of 

quality—fix them and code-switching, hallucinated words & grammar errors 
go away.

• Small tweak, big win: A simple vocabulary-extension step lifted Ukrainian 
grammar +30 pts and Arabic +50 pts—far beyond what extra data alone 
achieved.

• Equity in NLP: Custom tokenizers open the door for low-resource scripts, 
cutting compute cost and making non-English LLMs economically viable.


