

From English-Centric to Effective Bilingual:
LLMs with Custom Tokenizers for

Underrepresented Languages

UNLP 2025

Artur Kiulian, Anton Polishko, Mykola Khandoga, Yevhen Kostiuk,
Guillermo Gabrielli, Lukasz Gagala, Fadi Zaraket, Qusai Abu Obaida,
Hrishikesh Garud, Wendy Wing Yee Mak, Dmytro Chaplynskyi,
Selma Belhadj Amor, Grigol Peradze

Why Multilingual LLMs Struggle

The curse of multilinguality

Training dataset imbalance:
non-English data make up < 10%

Vocabulary composition: too
few language-specific tokens

Cultural
misalignment

Broken
language

Bad
representation,

noisy
embeddings

High
token/word

ratio

Our approach includes

1. Partial vocabulary replacement
2. Reinitalization of new token

embeddings
3. Continual pretraining, ensuring the

adoption of the new tokens
4. Eventual benchmarking

Tokenization 101
• We need tokenization to turn natural text into vector embeddings.
• Each LLM has a fixed vocabulary of sub-words, each sub-word has

a trainable embedding vector, thus natural text is vectorized.
• Larger vocab allows shorter token sequences and more nuanced

text representation.

Training corpus SentencePiece

Text Fixed Vocabulary
Trainable

embeddings
Sequence of
embeddings

Tokenizer training

Text vectorization

Mistral tokenization example
Input: The quick brown fox
Tokenizer → [The] [Ġquick] [Ġbrown] [Ġfox]
 ↑
 well-formed English - low token/word fertility

Input: Швидкий рудий лис
Tokenizer → [Шв] [ид] [кий] [Ġ] [ру] [д] [ий] [Ġ] [лис]
 ↑

fragmented Cyrillic - high fertility

Input: الثعلب البني السریع
Tokenizer → [ال] [ث] [ع] [ل] [ب] [Ġ] [ا] [ل] [ب] [ن] [ي] [Ġ] [ا] [ل] [س] [ر] [ي] [ع]
 ↑

ultra-fragmented Arabic - very high fertility

Vocabulary update update workflow

This workflow allows to expand the target language vocab via cannibalizing
non-Latin tokens.

1. Non-latin and non-UA tokens are removed along with their merge rules.
2. Token IDs of the removed tokens are assigned to additional UA tokens (existing

UA tokens preserve their IDs)
3. Merge rules are updated to accommodate new UA tokens
4. Time to update embeddings

UA training
corpus

UA tokenizer

Mistral tokenizer

Merging
tokenizers

Removal of non-UA
and non-Latin tokens

Merging of UA
tokens

UA-rich updated
Mistral tokenizer

Tokenization performance

*tokens/words ~ -log(vocab size)

Embeddings reinint
While the embeddings are trainable, we’ve given new tokens a
warm start using the following heuristics:

where the new (longer) tokens are expressed through existing
tokens and their respective embedding vectors are initialized as
their normalized linear sum.

Continual pre-training

We have used 8xA100-80-GB for the continual
pre-training of our models.

The following graphs illustrate the adoption of
the new tokens during the continual pre-training
over the first ~350M tokens (172M for
Georgian).

Evaluation metrics
NEWR (Non-Existing Word Ratio): The percentage of generated words
not present in a reference vocabulary — high NEWR indicates
hallucinations or poor lexical quality.

CSWR (Code-Switching Word Ratio): Measures how often the model
generates words mixing characters from different alphabets (e.g., Latin +
Cyrillic) — a sign of garbled outputs.

GCS (Grammar Correctness Score): A normalized score (via GPT-4 or
equivalent) assessing grammatical quality of generations — higher is
better.

Evaluation results

Conclusions
• Vocabulary is destiny: Token size & composition are the hidden levers of

quality—fix them and code-switching, hallucinated words & grammar errors
go away.

• Small tweak, big win: A simple vocabulary-extension step lifted Ukrainian
grammar +30 pts and Arabic +50 pts—far beyond what extra data alone
achieved.

• Equity in NLP: Custom tokenizers open the door for low-resource scripts,
cutting compute cost and making non-English LLMs economically viable.

