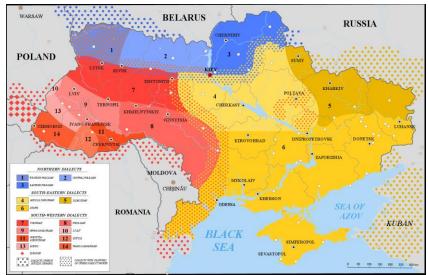
Vuyko Mistral

Adapting LLMs for Low-Resource Dialectal Translation

Roman Kyslyi¹, Yuliia Maksymiuk², Ihor Pysmennyi¹

¹National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

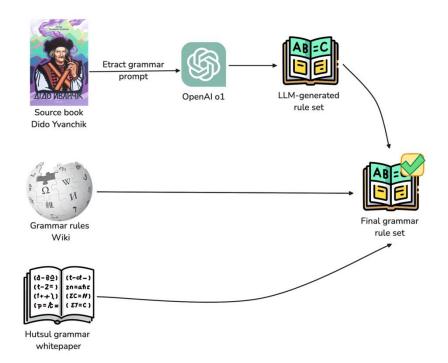
²Ukrainian Catholic University


Mistral:

Ой, єй, виджу, шо си зібрало богато людів на конфєренцію! Та й файно!

Goal of study

- Most research is centered on highresource languages and their standard variants underrepresenting dialects that lack sufficient textual resources and standardized orthographies
- To be preserved they need to be visible to modern LLM toolkit and research, which is challenging due to lack of resources



Hutsul dialect

- We've chosen Hutsul dialect as it is still used in Carpathians (21000 as per 2001 census)
- It has several written sources which can be used for training
- We used hybrid approach to construct grammar rule set

Linguistic characteristics of dialect:

- Phonetics: vowel transformations, such aschanging vowels "є" instead of "а", "я"(уа) (example:"як" → "єк", "ягода" → "єгода" ("yak" → "yek", "yahoda" → "yehoda")).
- Morphology: unique case endings (-єдь, -ci) ('-yed', '-si') and preserved dual forms дві яблуції ("two apples", with dual form "yablutsi" instead ofplural "yabluka").
- Lexicon: Romanian, Polish and German borrowings such as "бринза" (cheese) and "шпацірувати" (goforawalk).

Hutsul dialect

Reference (**Hutsul**): "Прошумавси у вечєр, єк зробивси в діда в обох хатах гармідер." (Eng: *He came to his senses in the evening, after a mess started in both of the grandfather's houses.*)

GPT-40: "Отєтавсі аж увечєру, єк зчинивсі в ґіда в обидвох осєдочьках гармидер." (Eng: He snapped out of it only in the evening, after a chaos started in both of the old man's

Mistral (manual + synthetic): "Отямивси аж увечері, коли зчинився в діда в обох хатах гармидер." (Eng: He came to his senses in the evening, when a chaos broke out in both grandfather's houses.)

BLEU: 31.46, chrF++: 46.62, TER: 54.55, Fluency: 4, Adequacy: 5, Dialect: 3

Mistral (manual only): "Отємивси аж увечєрі, єк зченивси в діда в обох хатах гармидер." (Eng: He came to his senses only in the evening, after stirring up a mess in both of the grandfather's houses.)

BLEU: 34.39, chrF++: 56.92, TER: 45.45, Fluency: 4, Adequacy: 5, Dialect: 4

LLAMA (manual + synthetic): "Отямивси аж у вечере, коли зчинивси в діда в обох хатях гармидер." (Eng: He came to his senses in the evening, when a mess started in both grandfather's houses.)

BLEU: 20.45, chrF++: 46.42, TER: 63.64, Fluency: 4, Adequacy: 4, Dialect: 3

Fun Examples

Source (Ukr.):

Иванчік сказав: "Час і мені йти на толоку"

Model output:

Иванчік **вікажу**: "Чєс і мині иди на толоку"

Real Hutsul:

Иванчік сказав: "Чєс и мині йти на толоку"

Source (Ukr.):

Та й так над тим буком у руках «бога» й «чорта»

Model output:

Та й так над тим буком у руках «біга» й «мольфа»

Real Hutsul:

Тай так моцно над тим буком у руках «бога» й «чорта»

Source (Ukr.):

Аж кришив її: 3 золотого моря Вилетіла золота золотариця

Model output:

Аж кришив її: «З золотого моря Валентина золота золотариця

Real Hutsul:

Аж кришив її: «З золотого моря Вилетіла золота золотариця

Our contribution

First digital resources for the Hutsul dialect

- a 9 852-pair Hutsul ↔ Standard-Ukrainian parallel corpus and
- a 7 320-entry dialect-to-standard dictionary, compiled from literature, folklore and blogs

Data-scarcity solution via advanced RAG augmentation – we designed a rule-guided RAG pipeline that injects phonological and morphological rules into GPT-40 prompts, creating **52 142 high-quality synthetic sentence pairs** further filtered with automatic alignment checks

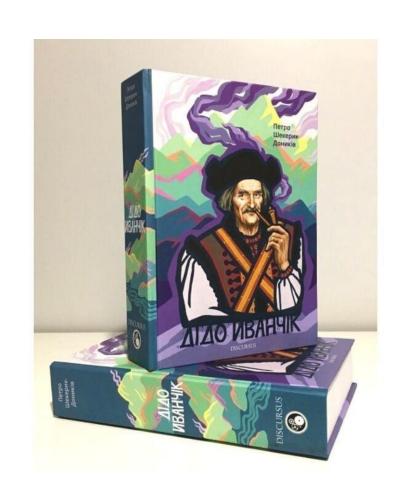
Parameter-efficient adaptation of compact open LLMs – two open-source models (Mistral-7B-Instruct v0.3 and LLaMA-3.1 8B) are fine-tuned with LoRA/QLoRA on the combined manual + synthetic data, making dialect translation feasible on a single consumer GPU

Comprehensive, dialect-aware evaluation framework – performance is judged with BLEU, chrF++, TER and a GPT-40 "LLM-judge" scoring Fluency, Adequacy and Dialectal Quality, mitigating the blind spots of standard n-gram metrics for non-standard orthographies

Empirical finding: small fine-tuned models beat GPT-40 – the best 7 B model surpasses zero-shot GPT-40 across all automatic metrics and in LLM-based human-like scores, demonstrating the value of dialect-specific tuning even with modest model sizes

Open-source commitment – all code, data, prompts and trained LoRA weights are released on GitHub to encourage further work on Ukrainian dialects and other low-resource varieties

Data collection


9 852 manually aligned sentence pairs

- Hutsul originals from Дідо Иванчік (foundational dialect novel), ethnographic transcripts, folklore websites and dialect blogs
- Standard-Ukrainian references taken from a modern bilingual edition or hand-translated

7 320-entry Hutsul ↔ Ukrainian dictionary

 Scraped Дідо Иванчік + five open-access lexicons ("Hutsul Hovir", "Dictionary of Hutsul Words", etc.)

(!) Lexicon is biased toward the vocabulary found in folk-lore, thus lacks diversity in news, science, or politics.

Synthetic data generation pipeline

Grammar Rule Extraction

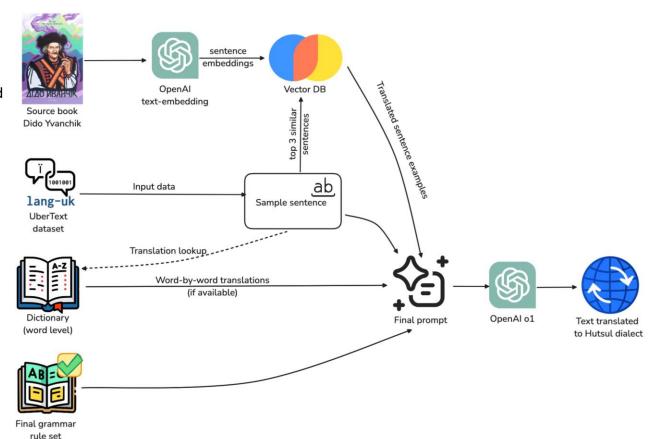
- Prompt GPT-40 to distill phonological, morphological, and syntactic rules unique to the Hutsul dialect.
- Output: structured rule set → reusable prompt template.

RAG Index Creation

• Embed every sentence of "Дідо Иванчік" with text-embedding-3-large and store in a vector index to act as an authentic dialect reference base.

Candidate Retrieval

• Sample Standard-Ukrainian lines from the UberText corpus; for each, retrieve the top-3 semantically closest Hutsul sentences from the index.


Prompt Assembly

- extracted grammar rules
- three retrieved Hutsul examples
- source Standard-Ukrainian sentence
- \Rightarrow one rich prompt ready for generation.

Dialect Generation & Filtering

• Instruct GPT-40 to translate the source into Hutsul, adhering to the rules and style cues. Post-process with alignment/character-ratio filters to keep only high-quality synthetic pairs.

Result: 52 k clean Standard ↔ Hutsul sentence pairs that enlarge the training corpus times

Alignment Quality Metrics

Three metrics to check if sentence pairs align well:

1.U-src (Unaligned source)

- Proportion of source language characters that cannot be aligned to target
- Lower values = better alignment quality

2.U-tgt (Unaligned target)

- Proportion of target language characters that cannot be aligned to source
- Lower values = better alignment quality

3.X (Crossing alignments)

- Proportion of word alignment pairs that cross/swap positions
- Shows structural differences between source and target

Calculated using automatic word alignment tools

Metric	Original	Synthetic	Synthetic	
	Dataset	(Raw)	(Filtered)	
U-src	0.260	0.139	0.005	
U-tgt	0.265	0.136	0.005	
X	0.022	0.033	0.019	

Table 1: Alignment quality metrics comparison between the original dataset, raw synthetic dataset, and synthetic dataset after alignment-based filtering.

Model fine-tuning and evaluation

- **Mistral-7B-Instruct v0.3** Chosen for its performance-to-size ratio. It outperforms some larger models on many benchmarks, supports multilingual instructions, and includes explicit support for Ukrainian.
- **LLaMA-3.1 8B Instruct** The instruction-tuned version of LLaMA 3.1 8B. This model has a strong multilingual support and improved instruction-following ability, making it a good candidate for low-resource translation.
- Each model was trained for 3 epochs using LoRa on two dataset variants:
 - a manually created Hutsul–Ukrainian parallel corpus
 - an extended version that included combined manual and filtered synthetic data.

Model	BLEU	chrF++	TER	Fluency	Adequacy	Dialect
GPT-4o	56.64	65.90	34.34	3.76	4.30	3.22
LLaMA (manual annotated + synthetic)	69.02	74.92	22.90	4.11	4.72	3.33
LLaMA (manual annotated only)	59.98	72.61	28.62	4.13	4.72	3.38
Mistral (manual annotated only)	62.36	75.65	28.62	4.14	4.74	3.35
Mistral (manual annotated + synthetic)	74.35	81.89	22.90	4.18	4.72	3.60

Table 2: Automatic and LLM-based evaluation results. BLEU, chrF++, and TER are computed with sacreBLEU. Fluency, adequacy, and dialect quality are rated by GPT-40 (1–5 scale).

Conclusions and future work

- We have created comprehensive and high-quality Hutsul ↔
 Standard-Ukrainian parallel corpus as well as
- Novel method of generating synthetic dataset for low-resource dialects was developed
- Proof-of-concept: small open LLMs can outperform GPT-4o when dialect-tuned

• What's next? **Enrichment!**

Ґєкую за увагу! (Thanks!)