

Improving Sentiment Analysis for Ukrainian Social Media Code-Switching Data | UNLP 2025

Yurii Shynkarov, Veronika Solopova, Vera Schmitt

Motivation

Sentiment analysis is...

the process of computationally categorizing opinions expressed in a piece of information (Liu, Bing., 2012)

- Models available on Huggingface do not really work
- Good sentiment models allow business to monitor their products and for organisations to monitor social media for public opinion on different topics at scale
- Sentiment analysis was shown to predict election outcomes better than polls
- Difficulty: annotated data availability and linguistic code-switching complexity of the data

Annual distribution of the articles amount about sentiment analysis in Web of Science, 2013-2024

Dataset: why Telegram focus

Rating of the most popular social networks in Ukraine over the past three years, 2022-2024

Source:

OPORA social questionary.

Media consumption of Ukrainians: the third year of full-scale war

Dataset: why annotation still matters

The classes distribution of GPT-3.5 versus human validation during the annotation of social

Source:

Ustyianovych, T., Barbosa, D.:

Instant messaging platforms news multitask classification for stance, sentiment, and discrimination detection.

Dataset: existing datasets

Overview of datasets with Ukrainian social media content and annotated for sentiment analysis

Languages	Volume	Mean length	Classes	Sentimen	t	Annotation	
			structure	description	on	guideline	
Russian: 100%	13,114	736	Positive: 52%	News ori	enta-	Unknown	Not applicable sentiment
			Negative: 48%	tion tov	vards		orientation
				Ukraine		4	
Ukrainian: 75%	3,000	143	Positive: 74%	News ori	enta-	Unknown	
Russian: 25%			Negative: 26%	tion tov	vards		
English: <1%				Ukraine			
Ukrainian: 62%	7,513	203	Unlabeled: 91%	Text emoti	ion	Manual	
Russian: 38%			Negative: 3%				Most data is unlabeled
English: <1%			Neutral: 3%	4			
			Very Negative:				
			3%				
Ukrainian: 80%	564	501	Negative: 57%	Text emoti	ion	Manual	Too small
Russian: 20%		-	Positive: 30%				
		J	Neutral: 13%				
Russian: 98%	276,309	369	Negative: 53%	Text emoti	ion	GPT-3.5	
Ukrainian: 2%			Neutral: 33%				Advantage Breeden
			Positive: 14%				Mostly in Russian

Dataset: COSMOS

- Content dated between February 2022 and September 2024
- The total size of the collected texts is 12,224
- 7,224 texts the volume of the scraped documents (Telegram big news channels and comments)
- We integrated two publicly available datasets: TG samples from D. Baida [1] with 3,000 samples and 1,000 Yakaboo book reviews [2]
- 1,000 product reviews from Hotline.ua

Source:

[1] https://huggingface.co/datasets/dmytrobaida/autotrain-data-ukrainian-telegram-sentiment-analysis
[2] https://github.com/osyvokon/awesome-ukrainian-nlp

COde-Switched MUltilingual Sentiment for Ukrainian Social media

- Content dated between February 2022 and September 2024
- The total size of the collected texts is 12,224
- 7,224 texts the volume of the scraped documents (Telegram big news channels and comments)
- We integrated two publicly available datasets: TG samples from D. Baida [1] with 3,000 samples and 1,000 Yakaboo book reviews [2]
- 1,000 product reviews from Hotline.ua

Source:

[1] https://huggingface.co/datasets/dmytrobaida/autotrain-data-ukrainian-telegram-sentiment-analysis
[2] https://github.com/osyvokon/awesome-ukrainian-nlp

Dataset: COSMOS

- Final dataset includes 4 classes:
 - Positive
 - Negative
 - Neutral
 - Mixed
- The resulting dataset includes the following languages in the proportion:
 - 66% Ukrainian
 - 28% Russian
 - 6% code-switched content

Distribution of text lengths (in characters) across sentiment categories in the final dataset

Dataset: COSMOS annotations

4 The annotators have agreed to join our project (not professional linguists) + 2 first authors (computer scientist and trained linguist)

The average pairwise Cohen's Kappa agreement was $\kappa = 0.79$, indicating substantial reliability

Sentiment distribution of the dataset

Sentiment	Count	Percentage
Neutral	4,702	38%
Negative	$4,\!541$	37%
Positive	2,373	19%
Mixed	608	6%
Total	12,224	100%

Inter-annotator agreement matrix for the COSMUS dataset

Methods

LLMs and SLMs

SLM calibration analysis

Data augmentation

XAI analysis with LIME scores

Methods

Methods: LLM Baseline

 Across all configurations, prompts in English consistently outperformed Ukrainian prompts for

both models

• The performance gap between Ukrainian and English prompting was more pronounced in the

zero-shot setting than in the few-shot setting

• GPT-4o consistently outperformed DeepSeek V2-chat across all prompting strategies. This performance difference likely reflects GPT-4o's stronger multilingual capabilities

MacroF1-scores of LLM-based sentiment classifiers across different prompting strategies

Model	Zero-Shot Zero-Shot		Few-Shot	Few-Shot	
Model	(Ukr)	(\mathbf{Eng})	(Ukr)	(Eng)	
GPT-4o	0.55	0.58	0.61	0.63	
DeepSeek V2-chat	0.51	0.56	0.58	0.59	

Methods: Augmentation

- UkrRoberta with word substitution augmentation emerged as the strongest classifier overall, achieving a macro F1score of 0.64 on the test set
- The results highlight the importance of selecting an appropriate augmentation strategies based on model architecture and training paradigm

Macro F1-scores of sentiment classification models across different data augmentation strategies

Model	Original	Back-translation	Word substitution
GPT-4o	0.56	0.53	0.54
DeepSeek V2-chat	0.52	0.50	0.52
mBERT	0.53	0.49	0.58
UkrRoberta	0.55	0.52	$\boldsymbol{0.64}$

Results

Performance comparison between UkrRoberta and mBERT sentiment classification models

Language Subset	UkrRoberta ECE	mBERT ECE
All Texts	0.17	0.32
Ukrainian-only	0.16	0.40
Code-mixed	0.13	0.35
Russian-only	0.18	0.17

		UkrRoberta			mBERT		
Language	Metric	Precision	Recall	F1	Precision	Recall	F 1
UA	Macro Micro	$0.67 \\ 0.74$	$0.61 \\ 0.74$	$0.63 \\ 0.73$	0.73 0.64	0.44 0.57	$0.43 \\ 0.54$
RU	Macro Micro	$0.58 \\ 0.71$	$0.60 \\ 0.71$	$0.59 \\ 0.71$	$0.81 \\ 0.77$	$0.61 \\ 0.74$	$\begin{bmatrix} 0.66 \\ 0.74 \end{bmatrix}$
Code-Switched	Macro Micro	$0.72 \\ 0.76$	$0.69 \\ 0.69$	$\begin{bmatrix} 0.68 \\ 0.71 \end{bmatrix}$	0.69 0.80	$0.51 \\ 0.58$	$0.54 \\ 0.60$
Overall	Macro Micro	$0.66 \\ 0.74$	$0.62 \\ 0.74$	$\begin{bmatrix} 0.64 \\ 0.73 \end{bmatrix}$	$0.80 \\ 0.73$	$0.58 \\ 0.69$	$0.58 \\ 0.67$

Expected Calibration Error (ECE)

• The key idea here is to evaluate how well a model's predicted probabilities reflect the true likelihood of an outcome — in other words, how calibrated the model is

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} |acc(B_m) - conf(B_m)|$$

Results: Calibration

Reliability diagrams for UkrRoberta and mBERT calibration across language subsets

(A) Models overall calibration

(B) Calibration on Ukrainian-only texts

(c) Calibration on Russian-only texts

(D) Calibration on code-switched texts

Evaluation: XAI, detecting language bias

Language contribution of the test set to predicted sentiment classes with LIME score

(a) 3-class model LIME analysis

(b) 4-class model LIME analysis

Evaluation: XAI

Positive

Negative

Neutral

Mixed

Ambiguously positive terms: все, воїни, ґіґачади, вірю

Irony, sarcasm, and colloquial usage make interpretation harder. Some misclassifications are caused by such cases

War-related & profane terms: розбомбленная, х уячит, обстреливают, в ата, русня, жахливий

Consistent with emotional intensity. Laughter tokens sometimes misleadingly signal irony or sarcasm.

Emotionally neutral terms: conjunctions, generic verbs

Often predicted due to **the** absence of strong sentiment cues, not the presence of neutral ones.

Few clear markers; examples include *Hax* (strongly negative) and κργmo (positive)

Indicates weak concept **learning** for "mixed" sentiment by the model.

Conclusions

- 1. We developed COSMUS, a publicly available corpus of 12,224 texts covering Ukrainian, Russian, and code-switched content
- 2. Our experiments demonstrated that targeted word substitution can substantially improve fine-tuning results, while back-translation often degraded model performance
- 3. Fine-tuned UkrRoberta, combined with word substitution augmentation achieved the best results
- 4. LIME confirms that **UkrRoberta learns some sentiment- bearing patterns**, but:
- •Fails to fully capture irony and sarcasm
- •Over-relies on lexical cues like profanity or named entities
- 5. Gpt-4o work better than deepseek for Ukrainian social media sentiment annotation, but both cannot reach task-specific model performance.

Links to the dataset and fine-tuned best model

Thank you! Q&A

veronika.solopova@tu-berlin.de