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Introduction
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❑ The Russia-Ukraine war has intensified information warfare, turning social

media platforms like Telegram into critical battlegrounds.

❑ Telegram is a breeding ground for channels spreading misleading

information, Russian-favorable narratives, and falsehoods against Ukrainian

interests.

❑ Detecting these subtle manipulation techniques is an urgent security concern

to combat disinformation, protect public consensus, and ensure information

integrity.



Challenges
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❑ Nuance of Manipulation: Techniques are not just "fake news" but include subtle 

tactics like loaded language, whataboutism, and emotional appeals, which are 

hard for models to distinguish.

❑ Dual-Task Complexity: Our work addresses two distinct but related tasks: 

1. Technique Classification: What manipulation is being used? 

2. Span Identification: Exactly where in the text is it? 

❑ Linguistic Richness: The dataset contains Ukrainian and Russian, 

morphologically complex Slavic languages, which poses challenges for 

tokenization and contextual understanding.

❑ Data Imbalance: Some manipulation techniques are far more common

than others, making it difficult to train a model that performs well on rare

classes.



Contributions
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❑ Investigation of ML, DL, and transformer-based models. [1]

❑ Our fine-tuned Transformer-based system like XLM-RoBERTa-Lrge [3] and

mDeBERTa [4] achieved competitive results in the UNLP 2025 Shared

Task: 3rd Place in Technique Classification and 2nd Place in Span

Identification

❑ We provide a detailed error analysis that offers crucial insights into model

performance on Slavic languages and the specific challenges of manipulation

detection.



Task & Dataset Description
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❑ A corpus of Ukrainian and Russian Telegram posts provided by Texty.org.ua. [2]

Task 1: Technique Classification

Objective: Assign one or more of 10 

pre-defined manipulation labels to a text.

Metric: Macro F1-Score

Task 2: Span Identification

Objective: Pinpoint the exact start and end 

character indices of manipulative text.

Metric: Span F1-Score



Proposed Methodology
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Results and Analysis
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Table 5: Performance Comparison of ML, DL, and Transformer Models for both tasks



Error Analysis (Quantitative)

❑ The model excels on common tactics (Loaded_Language) but struggles with rare ones (Straw_Man, Bandwagon). 

Significant off-diagonal errors show confusion between related techniques (e.g., FUD and Appeal_to_Fear)

❑ High False Positives show model tends to over-predict span boundaries, tagging neutral words near manipulative text.
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Figure 3: Confusion matrix of XLM-RoBERTa large



Error Analysis (Qualitative)

❑ The model struggles with technique ambiguity, often predicting extra, related labels.

❑ The model frequently makes boundary errors, merging or splitting manipulative spans.
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Limitations
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❑ Reliability is low for rare techniques like whataboutism and straw_man due to

insufficient training examples.

❑ The model struggles to precisely identify start/end points in morphologically

complex Slavic languages, often resulting in overextended or merged spans.

❑ Techniques with similar rhetorical purposes (e.g., loaded language, appeal to

fear, and FUD) are frequently confused.

❑ The model was validated only on Telegram data; its performance on other social

media platforms or propaganda styles is unknown.



Future Works
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❑Employ synthetic data augmentation and weighted loss functions to

improve performance on rare manipulation classes.

❑ Implement boundary-aware architectures and targeted post-processing to

refine span predictions and reduce boundary errors.

❑Use contrastive learning to explicitly train the model to distinguish between

semantically similar manipulation tactics.

❑Develop custom tokenization and embeddings to better handle code-mixing

and dialectical variations present in real-world data.



Conclusion
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❑ We presented a robust system for detecting manipulation in Ukrainian and Russian

Telegram posts, achieving top-3 performance in the UNLP 2025 shared task.

❑ Transformer-based models, especially XLM-ROBERTa-large, proved highly

effective, demonstrating the power of large, pre-trained multilingual models for this

domain.

❑ Key challenges remain in distinguishing fine-grained techniques and precisely

identifying span boundaries, highlighting areas for future research.

❑ This work represents a significant step toward developing automated tools to

combat information warfare in critical socio-political contexts.
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